Securing Systems with Scarce Entropy: LWE-Based Lossless Computational Fuzzy Extractor for the IoT

نویسندگان

  • Christopher Huth
  • Daniela Becker
  • Jorge Guajardo
  • Paul Duplys
  • Tim Güneysu
چکیده

With the advent of the Internet of Things, lightweight devices necessitate secure and cost-efficient key storage. Since traditional secure storage is expensive, the valuable entropy could originate from noisy sources, for which fuzzy extractors allow strong key derivation. While providing information-theoretic security, fuzzy extractors require large amount of input entropy to account for entropy loss in the key extraction process. It has been shown by Fuller et al. [20] that the entropy loss can be reduced if the requirement is relaxed to computational security based on the hardness of the Learning with Errors problem. Using this computational fuzzy extractor, we show how to construct a device-server authentication system providing outsider chosen perturbation security and pre-application robustness. We present the first implementation of a lossless computational fuzzy extractor where the entropy of the source equals the entropy of the key on a constrained device. The implementation needs only 1.45KB of SRAM and 9.8KB of Flash memory on an 8-bit microcontroller. We compare our implementation to existing work in terms of security, while achieving no entropy loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Fuzzy Extractors

Fuzzy extractors derive strong keys from noisy sources. Their security is defined informationtheoretically, which limits the length of the derived key, sometimes making it too short to be useful. We ask whether it is possible to obtain longer keys by considering computational security, and show the following. • Negative Result: Noise tolerance in fuzzy extractors is usually achieved using an in...

متن کامل

Efficient, Reusable Fuzzy Extractors from LWE

A fuzzy extractor (FE), proposed for deriving cryptographic keys from biometric data, enables reproducible generation of high-quality randomness from noisy inputs having sufficient min-entropy. FEs rely in their operation on a public “helper string” that is guaranteed not to leak too much information about the original input. Unfortunately, this guarantee may not hold when multiple independent ...

متن کامل

When Are Fuzzy Extractors Possible?

Fuzzy extractors (Dodis et al., Eurocrypt 2004) convert repeated noisy readings of a high-entropy secret into the same uniformly distributed key. A minimum condition for the security of the key is the hardness of guessing a value that is similar to the secret, because the fuzzy extractor converts such a guess to the key. We define fuzzy min-entropy to quantify this property of a noisy source of...

متن کامل

Extractors for Three Uneven-Length Sources

We construct an efficient 3-source extractor that requires one of the sources to be significantly shorter than the min-entropy of the other two sources. Our extractors work even when the longer, n-bit sources have min-entropy n and the shorter source has min-entropy log n. Previous constructions for independent sources with min-entropy n required Θ(1/γ) sources [Rao06]. Our construction relies ...

متن کامل

Extractors and condensers from univariate polynomials

We give new constructions of randomness extractors and lossless condensers that are optimal to within constant factors in both the seed length and the output length. For extractors, this matches the parameters of the current best known construction [LRVW03], with an improvement in case the error parameter is small (e.g. 1/poly(n)). For lossless condensers, the previous best constructions achiev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016